

AGREEMENT BETWEEN THE MADRID CITY COUNCIL AND THE UNIVERSIDAD POLITECNICA DE MADRID (UPM) FOR THE APPLICATION OF SMART CITY TECHNOLOGIES IN MUNICIPAL AND CITY SERVICES FOR THE PERIOD 2024-2028

CONTEXT

- City Intelligence Strategy promoted by Madrid Digital Office.
- Smart (sustainable, secure and equitable) cities are powered by technologies such as IoT, Digital Twins, 5G, Edge Computing, Big Data, AI and XR.
- Transversal approach to all the challenges of a large city: mobility, energy, economy, public services, employability and citizen participation.
- Based on appropriate security measures (blockchain, SIEM and IDS, etc).
- Disruptions and innovations demand prior analyses before scalability in the set of municipal services.
- Common and interoperable framework for sensors, actuators and other specific elements deployed in the city's infrastructures, equipment and facilities.
- Data Model and Data Spaces that guarantee the unequivocal interpretation and sharing of information, facilitating data management by the different municipal services in order to improve efficiency and service quality.

FLOW CHART

Government

- Joint Commission
- Executive Commitee
- Technical Office

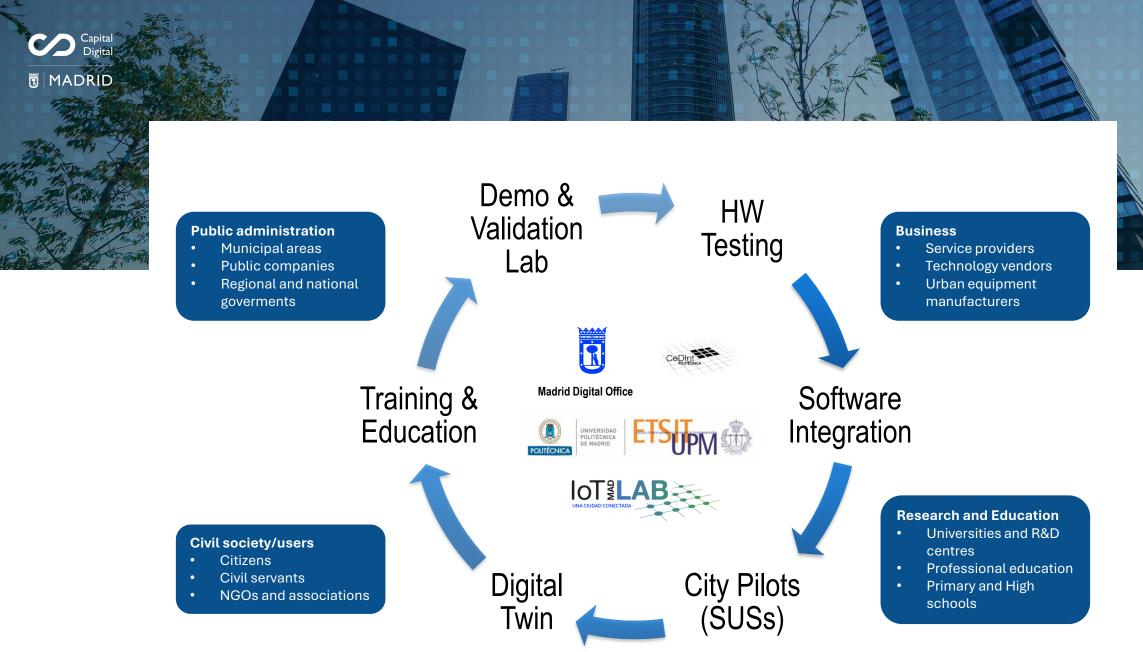
Technology Working Groups						
Internet of Things	5G	Cybersecurity	Data/Al			

Smart Urban Spaces

- Valdemingomez
- Cuña Verde
- Cuña Verde
- (up to 21 city districts)

City Challenges

- Connected vehicle
- Decarbonized cities
- Zero Energy Buildings
- Digital Twin
- Drones


Impact actions

- National and international projects
- Degree Awards
- Employment courses

Collaboration

- Industry participation
- Education and Research
- International network

IOT GROUP

• Harmonize future smart city implementations.

Identify open, neutral and interoperable IoT protocols and data models: technical requirements. Enable interaction among municipal services.

• Boost Public-Private Innovation towards optimization and competitiveness:

Technological providers: devices, platforms, solutions, 5G operators.

Municipal services providers: management, applications, city platform.

Citizens: end user engagement & gamification.

Training and education: new skills for students and unemployed.

GovTech: digital government transformation.

• Smart Urban Spaces as living labs:

Laboratory environment (Phase 0).

University campus controlled environment (Phase 1).

Real urban environment (Phase 2).

Phase 1

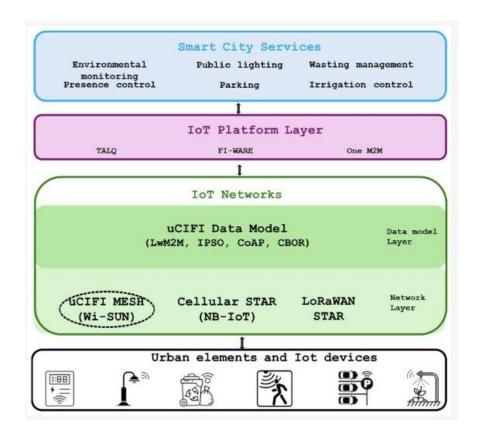
Phase 2

SCOPE - AREAS OF ACTION

INDOOR LABORATORY: TESTBED AND CONTROL PANEL

OUTDOOR LABORATORY: SMART SPACE IN LABORATORY SMART SM **A CONTROLLED AREA**

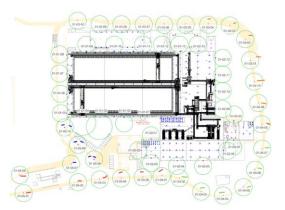
VR/AR LABORATORY: DIGITAL TWIN DEVELOPMENT



IOT NETWORK REFERENCE ARCHITECTURE

Object Name	ID	Instances	Object URN urn:oma:lwm2m:ext:3303		
Temperature Sensor	3303	Multiple			

Resource	ID	Oper.	Mandatory	Type	Units	Description
Sensor Value	5700	R	Mandatory	Float	Defined by "Units" resource	Current measured sensor value
Min Measured Value	5601	R	Optional	Float	Defined by "Units" resource	The minimum value measured by the sen- sor since power ON
Max Measured Value	5602	R	Optional	Float	Defined by "Units" resource	The maximum value measured by the sen- sor since power ON
Min Range Value	5603	R	Optional	Float	Defined by "Units" resource	The minimum value that can be measured
Max Range Value	5604	R	Optional	Float	Defined by "Units" resource	The maximum value that can be measured
Sensor Units	5701	R	Optional	String		Measurement units definition e.g. "Cel" for celsius
Reset Min and Max Measured Values	5605	Е	Optional	String		Reset the min and max measured values to current value



01-03-01	1	- 3		VERA S VRS 60 RUAD III SOUMA 4000K 60W - HISPALED
01-03-02	1	3	2	VERA S VRS 60 ROAD III 500mA 4000K 60W - HISPALED
01-03-03	1	3	3	VERA S VRS 60 ROAD III 500mA 4000K 60W - HISPALED
01-03-04	1	3	4	VERA S VRS 60 ROAD III 500mA 4000K 60W - HISPALED
01-03-05	1	3	5	LEDROAD-ST-P2- 4000k 80W - OPPLE
01-03-06	1	3	6	LEDROAD-ST-P2- 4000k 80W - OPPLE
01-03-07	1	3	7	LEDROAD-ST-P2- 4000k 80W - OPPLE
01-03-08	1	3	8	LEDROAD-ST-P2- 4000k 80W - OPPLE
01-03-09	1	3	9	LEDROAD-ST-P2- 4000k 80W - OPPLE
01-03-10	1	3	10	LEDROAD-ST-P2- 4000k 80W - OPPLE
01-04-01	1	4	1	ALFUMGO AE 4000K 60W - BENITO
01-04-02	1	4	2	VEKA S 4000K 53,1W · CARANDINI
01-04-03	1	4	3	VEKA S 4000K 53,1W - CARANDINI
01-04-04	1	4	4	VEKA S 4000K 53,1W - CARANDINI
01-04-05	1	4	5	VEKA S 4000K 53,1W - CARANDINI
01-04-06	1	4	6	VEKA S 4000K S3,1W - CARANDINI
01-04-07	1	4	7	VEKA S 4000K 53,1W - CARANDINI
01-04-08	1	4	8	VERA 5 VRS 60 ROAD III 500mA 4000K 60W - HISPALED
01-04-09	1	4	9	VERA S VRS 60 ROAD III 500mA 4000K 60W - HISPALED
01-04-10	1	4	10	VERA 5 VRS 60 ROAD III 500mA 4000K 60W - HISPALED
01-05-01	1	5	1	ALFUMGO AE 4000K GOW - BENITO
01-05-02	1	5	2	ALFUM60 AE 4000K 60W - BENITO
01-05-03	1	5	3	ALFUMGO AE 4000K GOW - BENITO
01-05-04	1	5	4	ALFUM60 AE 4000K 60W - BENITO
01-05-05	1	5	5	ALFUMGO AE 4000K 60W - BENITO
01-05-06	1	5	6	ALFUMGO AE 4000K 60W - BENITO
01-05-07	1	5	7	TECEO 1 30 LEDS 800mA 4000K óptica 5303 77W - SOCELEC
01-05-08 a	1	5	- 8	TECEO 1 30 LEDS 800mA 4000K óptica 5303 77W - SOCELEO
01-05-08 b	1	5	8	TECEO 1 30 LEDS 800mA 4000K óptica 5303 77W - SOCELEO
01-05-09 a	1	5	9	TECEO 1 30 LEDS 800mA 4000K óptica 5303 77W - SOCELEO
01-05-09 b	1	5	9	TECEO 1 30 LEDS 800mA 4000K óptica 5303 77W - SOCELEC
01-05-10 a	1	5	10	TECEO 1 30 LEDS 800mA 4000K óptica 5303 77W - SOCELEC
01-05-10 b	1	5	10	TECEO 1 30 LEDS 800mA 4000K óptica 5303 77W - SOCELEC

ABRICANTE							
Denominación Social:	Schréder						
Dirección física:	SCHRÉDER SOCELEC SA						
	Pol. Ind. El	Henares	-	A۷.	Roanne	66	
	19180						
	Marchamalo (Guadalajara), España						
	+34 9 49 32 50 80						
Página WEB:	https://sp.schreder.c						
1ail de contacto:	mailto://comercialspa	in@schreder.	com				
QUIPO							
lasificación:	Luminaria viaria > Lu	minarias Pos	t-top				
Denominación:	IZYLUM						
Referencia comercial:							
/ersión / fecha de							
omercialización:							
magen							
		-					
	Q -						
JRL del producto:	https://sp.schreder.c	om/es/produ	ctos/i	lumina	cion-led-		
	exterior-izylum						
aracterísticas:	Altura recomendada para la instalación: 4 – 15 m.						
	Temperatura de funcionamiento: -40ºC a +55ºC.						
	remperatura de funcionamiento: -40ºL a +55ºL.						
	Módulo de LEDs: 40 LEDs.						
	Floudio de CCDS: 40 CCDS.						
ensores:	Como miembro fundador del consorcio Zhaga, Schréder ha						
	participado en la creación del programa de certificación Zhaga-						
	D4i y en la iniciativa de este grupo para estandarizar un						
	ecosistema interoperable.						
NEXO I: CHECKLIST LI							
onector Zhaga superi	or	Sí					
onector Zhaga inferio		Sí					
rotocolo Dali4	Sí						
Alimentación		220 - 240 V					
ontrol con nodo IoT		Sí					
ontrol con sensor PIR		Sí					
Descubrimiento en Plai		Sí					
Apertura sin herramientas		Sí					
-period out their diffic							

• IoT devices

60 LED luminaire controllers, each capable of adjusting brightness levels dynamically.

10 PIR sensors for motion detection.

15 parking occupancy sensors for monitoring vehicle presence.

Several environmental sensors, including noise, temperature, humidity, air quality, flood, rain, and UV radiation sensors.

Electricity consumption meters to validate energy consumption as result of the smart lighting system.

Adaptative lighting

Motion-based adaptation

Environmental adaptation

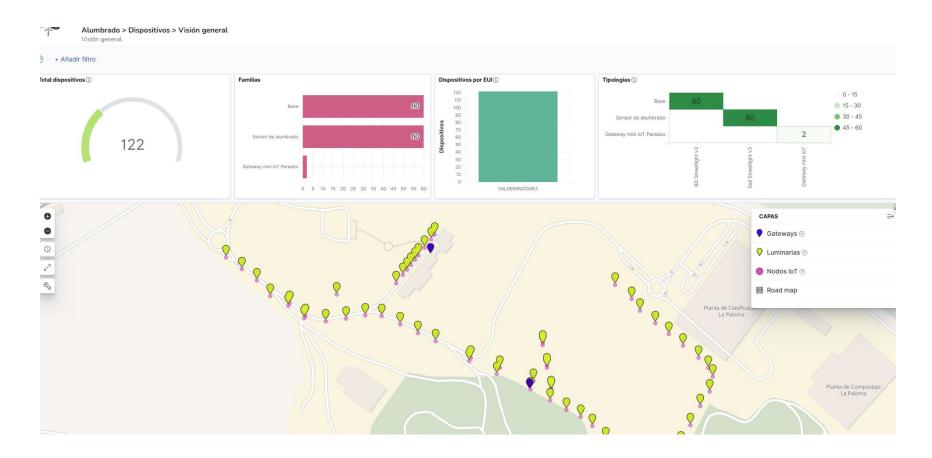
Parking optimization

• Data driven platform:

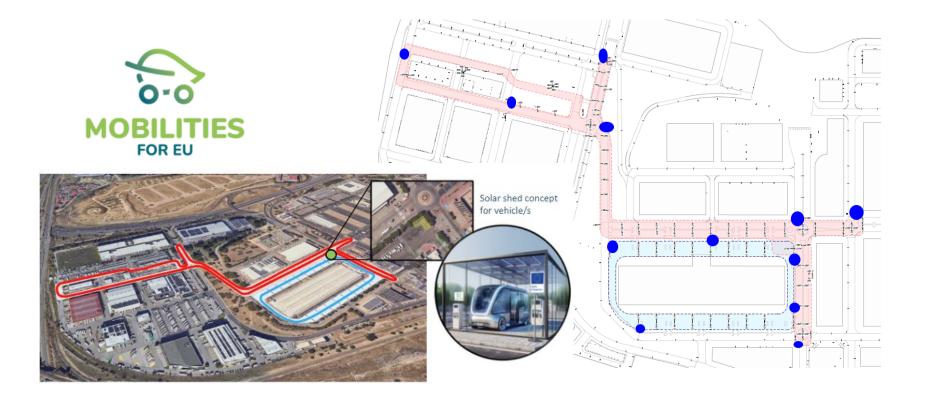
Characterize the daily and nightly activity of the plant.

Identify high-traffic zones and optimize illumination schedules accordingly.

Enable predictive maintenance and energy-use optimization.



SUS#1 VALDEMINGOMEZ



SUS#2 MERCAMADRID

SUS#2 MERCAMADRID

IoT devices

40 LED luminaire controllers, each capable of adjusting brightness levels dynamically.

12 PIR sensors for motion detection.

25 parking occupancy sensors for monitoring vehicle presence.

Several environmental sensors, including noise, temperature, humidity, air quality, flood, rain, and UV radiation sensors.

14 Electricity consumption meters.

Adaptative lighting

Motion-based adaptation.

Environmental adaptation and traffic signaling.

Parking optimization

• Data driven platform:

Characterize the daily and nightly activity of the market.

Integration with autonomous vehicles (regulation and signaling).

Enable predictive maintenance and energy-use optimization.

INDUSTRY AND INTERNATIONAL SUPPORT

